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Abstract. In this paper the singular manifold method allows us to obtain a non-isospectral Lax
pair, Darboux transformations and Miura transformations for an equation in(2+1) dimensions and
its modified version. In this way we can iteratively build different kinds of solutions with solitonic
behaviour.

1. Introduction

The equation under study in this paper is the following nonlinear equation in(2 + 1):

0= 4δt + δxxy + σyy + 2δxσxy + 2δ2
y

0= σxx − δy + δ2
x

(1.1)

which can also be written in the form

0= 4ψxt +ψxxxy + 4sψxyψy + (2ψx + 2ψxx∂
−1
x − s∂−1

x ∂y)(2ψxyψx + sψyy) (1.2)

by settingδ = sψ , s = ±i.
This latter equation (1.2) was proposed by Yu, Toda and Fukuyama [15–17] as the modified

version of the equation

0= (4uxt + uxxxy + 8uxuxy + 4uxxuy)x + uyyy. (1.3)

It was introduced by Hietarintaet al [8] using an extension of Hirota’s formalism [7, 18].
In [15], it has been proved that equation (1.3) is a reduction of the KP hierarchy that has the
Painlev́e property (PP) and admits a Lax representation.

Note that equation (1.3) represents a modification of the Calogero–Bogoyavlenskii–Schif
equation [1,2,12].

0= 4uxt + uxxxy + 8uxuxy + 4uxxuy.

Equation (1.3) can be also understood as a modification of the Kadontsev–Petviashili equation.
This is why we will refer to (1.3) as the Bogoyavlenskii–Kadontsev–Petviashili (KP–B)
equation. Its modified version (1.1) will be called mKP–B. The aim of this paper is to extract
a maximum of information about mKP–B by using the singular manifold method (SMM) [13]
that, as is well known, is based on the PP [11] for partial differential equations (PDEs) as
defined by Weisset al [14]. The plan of this paper is as follows:
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• In section 2 we shall analyse equation (1.1) from the point of view of the PP. The leading
terms suggest that (1.1) is connected with (1.3) through aMiura transformation, which
is explicitly constructed. As a bonus, we shall obtainauto-B̈acklund transformationsfor
KP–B as well as alinear superpositionof the solutions of mKP–B in terms of the solutions
of KP–B.
• Equation (1.1) has two Painlevé branches but (1.3) has only one. In consequence, it is

easier to apply the SMM to (1.3) and, then, use the above linear superposition to obtain
solutions of (1.1). In section 3, we apply the SMM to (1.3) and we linearize the singular
manifold equations and obtain the Lax pair for KP–B. A new result is thatthe Lax pair is
in fact non-isospectral.
• Section 4 is devoted to determining theDarboux transformationsfor KP–B.
• In section 5, the Miura transformation as well as the auto-Bäcklund transformation are

used to show that a Painlevé expansion for mKP–B is possible by introducing two singular
manifolds.
• We apply the previous results to obtain solitonic solutions of KP–B in section 6. Solutions

for mKP–B are also generated.
• The conclusions are presented in section 7.

2. Dominant terms and Miura transformations

2.1. Leading term analysis

In order to perform the Painlevé analysis [14] for equation (1.1), we need to expand the
fields σ, δ in a generalized Laurent expansion in terms of an arbitrary singularity manifold
χ(x, y, t) = 0. Such an expansion should be of the form [14]

δx =
∞∑
j=0

aj (x, y, t)[χ(x, y, t)]
j−α

σx =
∞∑
j=0

bj (x, y, t)[χ(x, y, t)]
j−β.

(2.1)

By substituting (2.1) in (1.1), for the leading terms we have

α = β = γ = 1 a0 = ±χx b0 = χx (2.2)

from which we see that leading term analysis provides two different branches forδ in the
Painlev́e expansion [4–6]. Checking the PP should be done for both branches. It is not
difficult to prove that both branches pass the Painlevé test.

2.2. Miura transformations

If we truncate expansions (2.1) at the constant level, as is required by the SMM [13], we can
write the solutions in terms of a singular manifoldφ, which is not yet an arbitrary function
because it is determined by the truncation condition.

Nevertheless, in the present situation the ‘±’ sign ofa0 indicates that we have two possible
singular manifolds: one for the + sign and the other for the− sign. This is why we suggest [4]
introducing new fieldsu andû in the form

δx = u− û σx = u + û (2.3)

in such a way thatu andû, defined as

u = σx + δx
2

û = σx − δx
2

(2.4)
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depend on only one singular manifold [4–6].
By using (1.1), (2.4) can also be written as

ux = δy − δ2
x + δxx
2

ûx = δy − δ2
x − δxx
2

. (2.5)

It is tedious but not difficult to prove thatu andû satisfy equation (1.3). Therefore, (2.5)
represents the Miura transformations between solutions of (1.1) and (1.3). This is essentially
the Miura transformation introduced in [15].

2.3. Auto-B̈acklund transformation

From (2.3), it is immediate to conclude that solutions(δ, σ ) of (1.1) can be constructed as linear
superpositions of two solutions(u, û) of (1.3). Nevertheless, these solutions(u, û) are not
independent because from (2.3) and (2.5) we can see that they are related by the auto-Bäcklund
transformation:

ux + ûx + (u− û)2 − ∂−1
x (uy − ûy ) = 0. (2.6)

In conclusion,if we have two solutions(u, û) of (1.3) related by the auto-B̈acklund
transformation (2.6), we can construct solutions of (1.1) through (2.3).

From our point of view, the advantage of such a procedure is that (1.3) has only one
Painlev́e branch and it is easier to apply the SMM to (1.3) than to (1.1) because, as mentioned
above, (1.1) has two branches. With this in mind, the next section will be devoted to applying
the SMM to equation (1.3).

3. Singular manifold method for KP–B

3.1. Truncated expansion

Let us return to equation (1.3). To apply the SMM, it is more convenient to write it in the
following form:

0= uy − ωx
0= 4uxt + uxxxy + 8uxuxy + 4uxxuy + ωyy.

(3.1)

From leading term analysis, it is trivial to see that the truncated Painlevé expansion [13] foru
andω should be

u′ = u +
φx

φ

ω′ = ω +
φy

φ

(3.2)

where(u, ω) and(u′, ω′) are solutions of (3.1). Substituting expansion (3.2) in (3.1), we obtain
a polynomial inφ. If we require that all the coefficients of this polynomial be zero, we obtain
the following expressions after some algebraic manipulations (we used Maple V to handle the
calculation; the details are in the appendix):

ux = 2py − p2
x − 2vx − v2

8
+ λ (3.3)

uy = ωx = −r − 2λpx − vy + pxpy
2

(3.4)

ωy = rpx + 2λp2
x − pt − 2λpy +

p2
xpy − pxxy − vpxy − vpxpxx

2
− p

2
y + v2p2

x + p2
xx

4
(3.5)
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wherev, r andp are defined as

v = φxx

φx

r = φt

φx

px = φy

φx

(3.6)

andλ = λ(y, t) is anx-independent function which arises after performing an integration in
x (see appendix).

3.2. Singular manifold equations

Furthermore, substitution of (3.3)–(3.5) in (3.1) provides equations to be satisfied by the
singular manifold. These equations are (see appendix)

0= [4r + 2pxpy + 8λpx ]x +

[
py + 4λ− p

2
x

2
+ vx − v

2

2

]
y

= 0 (3.7)

and the following equation forλ:

λt + 2λλy = 0. (3.8)

It is useful to notice that the compatibility conditions between definitions (3.6) give rise
to the following equations:

φxxt = φtxx H⇒ vt = (rx + vr)x
φxxy = φyxx H⇒ vy = (pxx + vpx)x
φyt = φty H⇒ pxt = ry + rpxx − pxrx.

(3.9)

The set (3.7)–(3.9) are the singular manifold equations.
Note thatλ is not necessarily a constant but a function ofy andt that is a solution of (3.8).

3.3. Painlev́e analysis in singular manifold equations

We can consider singular manifold equations (3.7)–(3.9) as a system of nonlinear coupled
PDEs inv andp. This allows us to perform leading terms analysis by setting

v ∼ v0χ
a

px ∼ p0χ
b.

(3.10)

Substitution of (3.10) in (3.7)–(3.9) yields the leading powers

a = b = −1 (3.11)

and the leading coefficients

v0 = χx p0 = ±χx. (3.12)

The± sign tells us that the Painlevé expansion has two branches. The problem of systems with
two Painlev́e branches has been discussed in [3–6]. These references suggest that we should
consider both branches simultaneously by using two singular manifolds: one for each branch.
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3.4. Eigenfunctions and the singular manifold

In agreement with the foregoing, we can write the dominant terms ofv andp as

v = ψ+
x

ψ+
+
ψ−x
ψ−

px = ψ+
x

ψ+
− ψ

−
x

ψ−

(3.13)

whereψ+ is the singular manifold for the positive branch andψ− for the negative one. We
shall later see thatψ+ andψ− are the eigenfunctions of the Lax pair.

By combining (3.6) and (3.13), we obtain the expressions ofφ in terms of the
eigenfunctions

φx = ψ+ψ− φy = ψ−ψ+
x − ψ+ψ−x . (3.14)

3.5. Linearization of the singular manifold equations: the Lax pair

Substitution of (3.13) in (3.3)–(3.5) gives us the following expressions ofu andω in terms of
ψ+ andψ−:

ux = λ +
ψ+
y − ψ+

xx

2ψ+
= λ− ψ

−
y +ψ−xx
2ψ−

(3.15)

uxy − ωy = 2λy +
2ψ+

t +ψ+
yy + 2uyψ+

x + 4λψ+
y

ψ+
(3.16)

uxy + ωy = 2λy +
2ψ−t − ψ−yy + 2uyψ−x + 4λψ−y

ψ−
. (3.17)

Equation (3.15) can be considered to be the spatial part of the Lax pair which, written in a
more appropiate way, reads

0= ψ+
xx − ψ+

y + 2(ux − λ)ψ+

0= ψ−xx +ψ−y + 2(ux − λ)ψ−. (3.18)

The temporal part of the Lax pair can be obtained from (3.16), (3.17), which can be written
as

0= ψ+
t +

ψ+
yy

2
− uxy − ωy − 2λy

2
ψ+ + uyψ

+
x + 2λψ+

y

0= ψ−t −
ψ−yy
2
− uxy + ωy − 2λy

2
ψ− + uyψ

−
x + 2λψ−y .

(3.19)

It is interesting to note that the compatibility condition between (3.18) and (3.19) is equation
(3.1) together with condition (3.8). Therefore, (3.18) and (3.19) form the Lax pair for (3.1)
andλ is the spectral parameter, even though it isnon-isospectral. This result generalizes the
Lax pair of [15], in which the spectral parameter is absent.

4. Darboux transformations

We can now summarize the above results in the following form:

• Let u andω be solutions of (3.1) andφ1 a singular manifold for them (associated with a
spectral parameterλ1). This singular manifold can be constructed from two eigenfunctions
ψ+

1 andψ−1 as

φ1,x = ψ+
1ψ
−
1 φ1,y = ψ−1 ψ+

1,x − ψ+
1ψ
−
1,x (4.1)
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whereψ+
1 andψ−1 are eigenfunctions associated with an eigenvalueλ1 and therefore

satisfying the Lax pairs

0= ψ+
1,xx − ψ+

1,y + 2(ux − λ1)ψ
+
1

0= ψ+
1,t +

ψ+
1,yy

2
− uxy − ωy − 2λ1,y

2
ψ+

1 + uyψ
+
1,x + 2λ1ψ

+
1,y

(4.2)

0= ψ−1,xx +ψ−1,y + 2(ux − λ1)ψ
−
1

0= ψ−1,t −
ψ−1,yy

2
− uxy + ωy − 2λ1,y

2
ψ−1 + uyψ

−
1,x + 2λ1ψ

−
1,y

(4.3)

and the spectral parameterλ1 satisfies

λ1,t + λ1λ1,y = 0. (4.4)

• According to (3.2), we can define new solutionsu′ andω′:

u′ = u +
φ1,x

φ1

ω′ = ω +
φ1,y

φ1

(4.5)

whose Lax pairs (associated with the spectral parameterλ2) will be

0= ψ ′+2,xx − ψ
′+
2,y + 2(u′x − λ2)ψ

′+
2

0= ψ ′+2,t +
ψ
′+
2,yy

2
− u

′
xy − ω′y − 2λ2,y

2
ψ
′+
2 + u′yψ

′+
2,x + 2λ2ψ

′+
2,y

(4.6)

0= ψ ′−2,xx +ψ
′−
2,y + 2(u′x − λ2)ψ

′−
2

0= ψ ′−2,t −
ψ
′−
2,yy

2
− u

′
xy + ω′y − 2λ2,y

2
ψ
′−
2 + u′yψ

′−
2,x + 2λ2ψ

′−
2,y

(4.7)

and we can construct a singular manifoldφ′ for the iterated fieldsu′, ω′ throughψ
′+ and

ψ
′− as

φ′2,x = ψ
′+
2 ψ

′−
2 φ′2,y = ψ

′−
2 ψ

′+
2,x − ψ

′+
2 ψ

′−
2,x . (4.8)

4.1. Truncated expansion in the Lax pair

We can consider the Lax pair (4.6) or (4.7) as a system of coupled nonlinear PDEs [5, 9] in
ψ
′+
2 , ψ

′−
2 , u′ andω′. Therefore, the SMM can be applied to the Lax pair itself and truncated

expansions forψ
′+
2 andψ

′−
2 should be added to the expansions (4.5). Such expansions can be

written as

ψ
′+
2 = ψ+

2 −
ψ+

1�
+

φ1
ψ
′−
2 = ψ−2 −

ψ−1 �
−

φ1
. (4.9)

The seminal solutionsu, ω, ψ+
2 andψ−2 must satisfy the same Lax pair with the spectral

parameterλ2, which means that

0= ψ+
2,xx − ψ+

2,y + 2(ux − λ2)ψ
+
2

0= ψ+
2,t +

ψ+
2,yy

2
− uxy − ωy − 2λ2,y

2
ψ+

2 + uyψ
+
2,x + 2λ2ψ

+
2,y

(4.10)

0= ψ−2,xx +ψ−2,y + 2(ux − λ2)ψ
−
2

0= ψ−2,t −
ψ−2,yy

2
− uxy + ωy − 2λ2,y

2
ψ−2 + uyψ

−
2,x + 2λ2ψ

−
2,x .

(4.11)
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Substituting the truncated expansions (4.5) and (4.9) in the Lax pairs (4.6), (4.7) and after
some calculation, (we used Maple V for it) we obtain

�+ =
∫
ψ+

2ψ
−
1 dx

�− =
∫
ψ+

1ψ
−
2 dx.

(4.12)

By substituting (4.1) and (4.12) in (4.5) and (4.9), we can conclude that the set

u′ = u +
ψ+

1ψ
−
1∫

ψ+
1ψ
−
1 dx

ω′ = ω +
ψ+

1,xψ
−
1 − ψ−1,xψ+

1∫
ψ+

1ψ
−
1 dx

ψ
′+
2 = ψ+

2 −
ψ+

1

∫
ψ+

2ψ
−
1 dx∫

ψ+
1ψ
−
1 dx

ψ
′−
2 = ψ−2 −

ψ−1
∫
ψ−2 ψ

+
1 dx∫

ψ+
1ψ
−
1 dx

(4.13)

constitutes a transformation of potentials and eigenfunctions that leaves the Lax pairs invariant.
Therefore, (4.13) should be considered as a Darboux transformation [10] for (3.1).

4.2. Iteration of the singular manifold

New solutions can be built through the singular manifold and Darboux transformations as
follows.

Equation (4.8) can be considered as a nonlinear equation inφ′2, ψ
′+
2 andψ

′−
2 and it is

therefore pertinent to add the following truncated expansion to the set (4.13):

φ′2 = φ2 +
1

φ1
(4.14)

whereφ2 satisfies

φ2,x = ψ+
2ψ
−
2 φ2,y = ψ−2 ψ+

2,x − ψ+
2ψ
−
2,x . (4.15)

Substituting (4.14) and (4.9) in (4.8), one has

1 = −�+�−. (4.16)

Since (4.14) defines a singular manifold foru′, it can be used to build a new iterated solution:

u′′ = u′ + φ
′
2,x

φ′2
. (4.17)

Substitution of equation (4.5) foru′ in (4.17) gives

u′′ = u +
τx

τ
(4.18)

where

τ = φ′2φ1 = φ1φ2 −�+�−. (4.19)
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5. Two singular manifolds for mKP–B

Let us return to equation (1.1), through the superposition (2.3).
Letφ andφ̂ be singular manifolds foru andû respectively. This means that the truncated

Painlev́e expansions foru andû are

u′ = u +
φx

φ
ω′ = ω +

φy

φ

û′ = û +
φ̂x

φ̂
ω̂′ = ω̂ +

φ̂y

φ̂
.

(5.1)

Consequently, according to (2.3), the Painlevé expansion forδ andσ is

δ′x = u− û +
φx

φ
− φ̂x
φ̂
= δx +

φx

φ
− φ̂x
φ̂

σ ′x = u + û +
φx

φ
+
φ̂x

φ̂
= σx +

φx

φ
+
φ̂x

φ̂
.

(5.2)

Nevertheless, both singular manifoldsφ andφ̂ are not independent becauseu andû are related
by the auto-B̈acklund transformation (2.6)

ux + ûx + (u− û)2 − ∂−1
x (uy − ûy ) = 0. (5.3)

The same happens foru′ andû′ which are related as

u′x + û′x + (u′ − û′)2 − ∂−1
x (u′y − û′y ) = 0. (5.4)

Substitution of (5.1) in (5.4) provides

φx

φ

φ̂x

φ̂
= φx

φ

(
u− û +

φxx

2φx
− φy

2φx

)
+
φ̂x

φ̂

(
−u + û +

φ̂xx

2φ̂x
+
φ̂y

2φ̂x

)
(5.5)

or

φx

φ

φ̂x

φ̂
= φx

φ

(
δx +

φxx

2φx
− φy

2φx

)
+
φ̂x

φ̂

(
−δx +

φ̂xx

2φ̂x
+
φ̂y

2φ̂x

)
. (5.6)

We can conclude that an equation such as mKP–B with two Painlevé branches admits a
two singular manifold expansion (5.2) in which both manifolds are related by (5.6).

The Lax pair for mKP–B can be obtained trivially by substituting the Miura transformation
in the Lax pair for KP–B.

6. Solutions

In this section, we obtain solutions to KP–B and mKP–B in a systematic way using the previous
results. The steps followed in this iterative procedure can be summarized as follows:

(1) We start from seminal solutions of (1.3) and write the Lax pair for them. The solitonic
behaviour of the iterated solutions will depend on our choice of the seminal ones.

(2) Solving the Lax pairs, we obtainψ+
1 , ψ−1 , ψ+

2 andψ−2 .
(3) We use the results of 2 in (4.1), (4.9), and (4.12) to obtainφ1, φ2,�+ and�−.
(4) We use (4.13) and (4.18) to obtain the first and second iterationsu′ andu′′, respectively.
(5) By combining two solutions for (1.3) we can construct a solution for (1.1) by means of

(5.2). The singular manifolds should be related by (5.6).
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6.1. Caseu = ω = 0

Let us apply the above procedure to the case in which the seminal solutions of (1.3) are

u = ω = 0.

If we restrict ourselves to the case in whichλ1 andλ2 are constant, non-trivial solutions of the
Lax pairs (4.2), (4.3) and (4.10), (4.11) are

ψ+
1 = exp

[
a+

1x + ((a+
1)

2 − 2λ1)y −
(
(a+

1)
4 − 4λ2

1

2

)
t

]
ψ−1 = exp

[
a−1 x − ((a−1 )2 − 2λ1)y +

(
(a−1 )

4 − 4λ2
1

2

)
t

]
(6.1)

ψ+
2 = exp

[
a+

2x + ((a+
2)

2 − 2λ2)y −
(
(a+

2)
4 − 4λ2

2

2

)
t

]
(6.2)

ψ−2 = exp

[
a−2 x − ((a−2 )2 − 2λ2)y +

(
(a−2 )

4 − 4λ2
2

2

)
t

]
(6.3)

wherea+
i , a
−
i are arbitrary constants. Integration of (4.1) and (4.15) yields

φ1 = 1

a+
1 + a−1

(α1 +ψ+
1ψ
−
1 )

φ2 = 1

a+
2 + a−2

(α2 +ψ+
2ψ
−
2 )

(6.4)

whereαi are arbitrary constants. Using (4.12) one has

�+ = 1

a+
2 + a−1

(β+ +ψ+
2ψ
−
1 )

�− = 1

a+
1 + a−2

(β− +ψ+
1ψ
−
2 )

(6.5)

β+ andβ− are arbitrary constants.
The first iteration provides the solution

u′ = ∂x [ln φ1] ω′ = ∂y [ln φ1] (6.6)

and the second one,

u′′ = ∂x [ln τ ] ω′′ = ∂y [ln τ ] (6.7)

τ = 1

(a+
1 + a−1 )(a

+
2 + a−2 )

(α1α2 + α1ψ
+
2ψ
−
2 + α2ψ

+
1ψ
−
1 +A12ψ

+
1ψ
−
1 ψ

+
2ψ
−
2 )

+
1

(a+
2 + a−1 )(a

+
1 + a−2 )

(β+β− + β+ψ−2 ψ
+
1 + β−ψ−1 ψ

+
2 ) (6.8)

A12 = (a+
2 − a+

1)(a
−
2 − a−1 )

(a+
2 + a−1 )(a

−
2 + a+

1)
. (6.9)

This solution includes the two soliton solutions of [15] whenβ+ = β− = 0.
A particularly interesting case occurs whena+

2 = a+
1 or a−2 = a−1 . The interaction term

A12 therefore vanishes. This case is termed aresonant state.
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6.2. Caseδ = σ = 0

In this case the Miura transformation (2.4) givesu = û = ω = ω̂ = 0, which means that we
can use the solutions of the previous section and construct iterated solutionsδ′, σ ′ by using
(5.2).

According to (6.1)–(6.4), the solution forφ will be

φ = 1

a+ + a−
(α +ψ+ψ−)

ψ+ = exp

[
a+x + ((a+)2 − 2λ)y −

(
(a+)4 − 4λ2

2

)
t

]
ψ− = exp

[
a−x − ((a−)2 − 2λ)y +

(
(a−)4 − 4λ2

2

)
t

] (6.10)

and forφ̂:

φ̂ = 1

â+ + â−
(α̂ + ψ̂+ψ̂−)

ψ̂+ = exp

[
â+x + ((â+)2 − 2λ)y −

(
(â+)4 − 4λ̂2

2

)
t

]

ψ− = exp

[
â−x − ((â−)2 − 2λ̂)y +

(
(â−)4 − 4λ̂2

2

)
t

]
.

(6.11)

As mentioned before,φ andφ̂ should be related by (5.6). By substituting (6.10) and (6.11)
in (5.6), we have

ψ̂+ψ̂− = ψ+ψ−

and

0= a−α̂
â+ + â−

+
α̂â+

a+ + a−

and consequently

â+ = a+ â− = a− λ̂ = λ a−α̂ = −αâ+.

We have for the first iteration

δ′ = ln

(
φ

φ̂

)
σ ′ = ln(φφ̂)

(6.12)

with

φ = 1

a+ + a−
(α +ψ+ψ−)

φ̂ = 1

a+ + a−

(
− a

+

a−
α +ψ+ψ−

) (6.13)

and for the second iteration,

δ′′ = ln
(τ
τ̂

)
σ ′′ = ln(τ τ̂ )

(6.14)
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Figure 1. Two-soliton solutionδ′′x . Figure 2. Two-soliton solutionδ′′x : resonant case.

Figure 3. Two-soliton solution forσ ′′x . Figure 4. Two-soliton solution forσ ′′xy .

with

τ = 1

(a+
1 + a−1 )(a

+
2 + a−2 )

(α1α2 + α1ψ
+
2ψ
−
2 + α2ψ

+
1ψ
−
1 +A12ψ

+
1ψ
−
1 ψ

+
2ψ
−
2 )

+
1

(a+
2 + a−1 )(a

+
1 + a−2 )

(β+β− + β+ψ−2 ψ
+
1 + β−ψ−1 ψ

+
2 )

τ̂ = 1

(a+
1 + a−1 )(a

+
2 + a−2 )

(
α1α2

a+
1a

+
2

a−1 a
−
2

− α1
a+

1

a−1
ψ+

2ψ
−
2 − α2

a+
2

a−2
ψ+

1ψ
−
1 +A12ψ

+
1ψ
−
1 ψ

+
2ψ
−
2

)
+

1

(a+
2 + a−1 )(a

+
1 + a−2 )

(β̂+β̂− + β̂+ψ−2 ψ
+
1 + β̂−ψ−1 ψ

+
2 ) (6.15)

A12 = (a+
2 − a+

1)(a
−
2 − a−1 )

(a+
2 + a−1 )(a

−
2 + a+

1)
.

Figure 1 shows the behaviour ofδ′′x . Figure 2 is the resonant case. Figures 3 and 4 are
respectivelyσ ′′x andσ ′′xx .

7. Conclusions

• An equation in (2 + 1) dimensions (KP–B) and its modified version (mKP–B) are studied
from the point of view of Painlev́e analysis.
• Starting with the modified version, we have seen that the equation has two Painlevé

branches. The leading term analysis is a very useful indicator of how to construct a Miura
transformation between KP–B and mKP–B. It also determines a linear superposition of
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the solutions of mKP–B in terms of two solutions of KP–B related by an auto-Bäcklund
transformation that is explicitly constructed.
• The Lax pair for KP–B was obtained by performing Painlevé analysis on the singular

manifold equations. This allowed us to define the eigenfunctions of the Lax pair.
• In section 4 we considered the Lax pair as a system of coupled PDEs in the fields and

eigenfunctions and we obtained the Darboux transformations between two solutions of
KP–B. This permitted us to determine an iterative procedure for obtaining solutions from
already known ones.
• The linear superposition of the solutions of mKP–B in terms of two solutions of KP–

B can be reinterpreted as a Painlevé expansion of the solutions of mKP–B in terms of
two singular manifolds. These singular manifolds are not independent. The coupling
condition between them can be derived from the auto-Bäcklund transformation for KP–B.
• Finally, we have applied the above results to obtain explicit solutions of both KP–B and

mKP–B.
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Appendix A

Substitution of the truncated expansion (3.2) in (3.1) provides a third degree polynomial in1
φ

.
Setting each coefficient of each polynomial at zero, we obtain the following equations:

(a) Coefficient in 1
φ3

4uy + 8pxux + 4r + 2vy + px(o
2
x + 2vx + v2) = 0. (A.1)

(b) Coefficient in 1
φ2

−8uxy − 4pxuxx12vuy + ux(−24vpx − 16pxx)− 4vxy − 6vvy − 8rx − 12vr

+px(−3pxy − vxx − 7vvx − 3v3− 3vp2
x) + pxx(−4vx − 2v2 − 3p2

x) = 0.

(A.2)

From (A.1), we can obtainuy as

uy = −8pxux + 4r + 2vy + px(o2
x + 2vx + v2)

4
(A.3)

whose substitution in (A.2) gives us

8uxx − 2pxy + 2vxx + 2vvx + 2pxpxx = 0 (A.4)

which can be integrated as

8ux − 2py + 2vx + v2 + p2
x − 8λ(y, t) = 0. (A.5)

From (A.3) and (A.5), we obtainux anduy as

ux = 2py − 2vx − v2 − p2
x

8
+ λ (A.6)

uy = ωx = −r − 2λpx − vy + pxpy
2

(A.7)

whereλ = λ(y, t).
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The compatibility conditionuxy = uyx between (A.6) and (A.7) is precisely the singular
manifold equation (3.7):

0=
[
r +

pxpy

2
+ 2λpx

]
x

+

[
py

4
+ λ− p

2
x

8
+
vx

4
− v

2

8

]
y

= 0. (A.8)

ωy can be obtained by taking the derivative of (A.7) with respect toy and then performing an
integration inx. The result is

ωy = rpx + 2λp2
x − pt − 2λpy +

p2
xpy − pxxy − vpxy − vpxpxx

2
− p

2
y + v2p2

x + p2
xx

4
. (A.9)

(c) Coefficient in1
φ

.
This coefficient is identically zero when (A.6) and (A.7) are substituted.

(d) Coefficient inφ0

This coefficient is obviously equation (3.1). By substituting (A.6), (A.7) and (A.9) in
(3.1), we obtain the condition of non-isospectrality:

λt + 2λλy = 0. (A.10)
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