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Abstract. In this paper the singular manifold method allows us to obtain a non-isospectral Lax
pair, Darboux transformations and Miura transformations for an equati@ify) dimensions and

its modified version. In this way we can iteratively build different kinds of solutions with solitonic
behaviour.

1. Introduction

The equation under study in this paper is the following nonlinear equati¢h-r):

0= 48, + 8y + 0y + 25,0,y + 257

1.1
0=0,, — 8, +82 4D

which can also be written in the form
0=4y + Ve HaAsYry + (20, + 2¢xx3;l - s3;18y)(2%y1//x +5Yyy) (1.2)

by settingd = sy, s = +i.
This latter equation (1.2) was proposed by Yu, Toda and Fukuyama[15-17] as the modified
version of the equation

0= (Buss + Urrxy + ity + Buyyity)y + it yyy. (1.3)

It was introduced by Hietarintat al [8] using an extension of Hirota’s formalism [7, 18].
In [15], it has been proved that equation (1.3) is a reduction of the KP hierarchy that has the
Painlewe property (PP) and admits a Lax representation.

Note that equation (1.3) represents a modification of the Calogero—Bogoyavlenskii—Schif
equation [1,2,12].

O ="4uy +trcxy + Buyliyy + ity uty.

Equation (1.3) can be also understood as a modification of the Kadontsev—Petviashili equation.
This is why we will refer to (1.3) as the Bogoyavlenskii—-Kadontsev—Petviashili (KP-B)
equation. Its modified version (1.1) will be called mKP—B. The aim of this paper is to extract
a maximum of information about mKP-B by using the singular manifold method (SMM) [13]
that, as is well known, is based on the PP [11] for partial differential equations (PDEs) as
defined by Weisgt al [14]. The plan of this paper is as follows:
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2132 P G Estvez ad G A Herraez

e In section 2 we shall analyse equation (1.1) from the point of view of the PP. The leading
terms suggest that (1.1) is connected with (1.3) throudtivaa transformation which
is explicitly constructed. As a bonus, we shall obtairto-Backlund transformationfor
KP-B as well as éinear superpositiomf the solutions of MKP-B in terms of the solutions
of KP-B.

e Equation (1.1) has two Painlevbranches but (1.3) has only one. In consequence, it is
easier to apply the SMM to (1.3) and, then, use the above linear superposition to obtain
solutions of (1.1). In section 3, we apply the SMM to (1.3) and we linearize the singular
manifold equations and obtain the Lax pair for KP—B. A new result isttieat ax pair is
in fact non-isospectral

e Section 4 is devoted to determining tharboux transformationfor KP—B.

e In section 5, the Miura transformation as well as the audeciBund transformation are
used to show that a Painkeexpansion for mKP-B is possible by introducing two singular
manifolds.

o We apply the previous results to obtain solitonic solutions of KP—B in section 6. Solutions
for mKP-B are also generated.

e The conclusions are presented in section 7.

2. Dominant terms and Miura transformations

2.1. Leading term analysis

In order to perform the Painlévanalysis [14] for equation (1.1), we need to expand the
fields o, § in a generalized Laurent expansion in terms of an arbitrary singularity manifold
x(x,y,t) = 0. Such an expansion should be of the form [14]

8x = Zaj(x, y, l)[X(X, Y, t)]jia
or =D b,y Dlx@, y, D).
j=0

By substituting (2.1) in (1.1), for the leading terms we have
a=p=y=1 ao = £xx bo = Xx (2.2)

from which we see that leading term analysis provides two different branchédsirfiothe
Painlee expansion [4—6]. Checking the PP should be done for both branches. It is not
difficult to prove that both branches pass the Painlest.

2.2. Miura transformations

If we truncate expansions (2.1) at the constant level, as is required by the SMM [13], we can
write the solutions in terms of a singular manifald which is not yet an arbitrary function
because it is determined by the truncation condition.

Nevertheless, in the present situation tésign of ag indicates that we have two possible
singular manifolds: one for the + sign and the other forthgign. This is why we suggest [4]
introducing new fields andz in the form

S, =u—1u oy =u+ti (2.3)
in such a way that andi, defined as
+3 =6,
w= 2" i=2 (2.4)

2 2
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depend on only one singular manifold [4—6].
By using (1.1), (2.4) can also be written as

_Sy—8§+5xx R _By—sf—axx
- 2 e = 2
It is tedious but not difficult to prove thatandu satisfy equation (1.3). Therefore, (2.5)

represents the Miura transformations between solutions of (1.1) and (1.3). This is essentially
the Miura transformation introduced in [15].

(2.5)

Ux

2.3. Auto-Bicklund transformation

From (2.3), itisimmediate to conclude that solutigéhiso ) of (1.1) can be constructed as linear
superpositions of two solution@, i) of (1.3). Nevertheless, these solutioms 1) are not
independent because from (2.3) and (2.5) we can see that they are related by th&ckiiod
transformation:

Uy iy + @ —@)? — 3 uy — i) = 0. (2.6)

In conclusion,if we have two solutionsu, i) of (1.3) related by the auto&klund
transformation (2.6), we can construct solutions of (1.1) through (2.3).

From our point of view, the advantage of such a procedure is that (1.3) has only one
Painlewe branch and it is easier to apply the SMM to (1.3) than to (1.1) because, as mentioned
above, (1.1) has two branches. With this in mind, the next section will be devoted to applying
the SMM to equation (1.3).

3. Singular manifold method for KP—-B

3.1. Truncated expansion

Let us return to equation (1.3). To apply the SMM, it is more convenient to write it in the
following form:
O=u,—w
o (3.1)
O0=A4uy +ucery + Buyityy + duccuy +wy,y.
From leading term analysis, it is trivial to see that the truncated P&mepansion [13] for
andw should be

bx

U =u+-—

Py

w’:a)+—

(3.2)

where(u, w) and(u’, o) are solutions of (3.1). Substituting expansion (3.2) in (3.1), we obtain

a polynomial ing. If we require that all the coefficients of this polynomial be zero, we obtain
the following expressions after some algebraic manipulations (we used Maple V to handle the
calculation; the details are in the appendix):

_2py—pf—2v,c—v2

Uy 8 +A (3.3)
F PPy
Uy =Wy = —1 — 2Apx — v‘% (3.4)

2 2.2 2
P)%py — Pxxy — UPxy — UPxPxx Py TUiprt P
2 4

wy =rpy + kaf — pr—2\py + (3.5)
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wherev, r andp are defined as

_bu
b«
_ %
bx
R
BN

andi = A(y, t) is anx-independent function which arises after performing an integration in
x (see appendix).

v

r

(3.6)

3.2. Singular manifold equations
Furthermore, substitution of (3.3)—(3.5) in (3.1) provides equations to be satisfied by the
singular manifold. These equations are (see appendix)

P2 02
0:[4r+2pxpy+8)»px]x+|:py+4k—?X+vx—?:| =0 (3.7)
¥

and the following equation for:
A+ 204, =0. (3.8)

It is useful to notice that the compatibility conditions between definitions (3.6) give rise
to the following equations:
¢xxt = ¢t)cx — U = (rx + vr)x
¢xxy = ¢yxx - Vy = (pxx + vpx)x (39)
(byt = ¢ty = Pxt =Ty +7pyx — DPxlx-

The set (3.7)—(3.9) are the singular manifold equations.
Note thats is not necessarily a constant but a functiory @inds that is a solution of (3.8).

3.3. Painle® analysis in singular manifold equations

We can consider singular manifold equations (3.7)—(3.9) as a system of nonlinear coupled
PDEs inv and p. This allows us to perform leading terms analysis by setting

v (3.10)
Px ™~ pPoX -

Substitution of (3.10) in (3.7)—(3.9) yields the leading powers
a=b=-1 (3.11)

and the leading coefficients
Vo= Xx P0= txXx (3.12)

The+ sign tells us that the Painleexpansion has two branches. The problem of systems with
two Painlee branches has been discussed in [3-6]. These references suggest that we should
consider both branches simultaneously by using two singular manifolds: one for each branch.
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3.4. Eigenfunctions and the singular manifold

In agreement with the foregoing, we can write the dominant termsaoid p as
v, Vs

IR
s (3.13)

Py Ty
wherey* is the singular manifold for the positive branch and for the negative one. We
shall later see that* andy~ are the eigenfunctions of the Lax pair.
By combining (3.6) and (3.13), we obtain the expressionspoin terms of the
eigenfunctions

b =Y Y oy =Y Y =YY, (3.14)

3.5. Linearization of the singular manifold equations: the Lax pair

Substitution of (3.13) in (3.3)—(3.5) gives us the following expressionsafdw in terms of
Yt andy

w;_w;—x wy_+ X_X
x:)\,+—:)\,—— 3.15
" 20+ 20 (3.15)
2+t 2u Ayt
Uy — @y = 2, + Vi Yy W“/’x vy (3.16)
27 =+ 2u T ANy
Uy + @y = 200, + Vi — ¥ 1/[“/’ v, : (3.17)

Equation (3.15) can be considered to be the spatial part of the Lax pair which, written in a
more appropiate way, reads
0=y — v +20u, — Vy*
0=y, +y, +20u, — Ny .
The temporal part of the Lax pair can be obtained from (3.16), (3.17), which can be written
as

(3.18)

.
0=y + _w;. Y (3.19)

B \_y uxy+a)v—2)\y _ _ - .
0=y, - ———— V¥ ¥, +2,.

It is interesting to note that the compatibility condition between (3.18) and (3.19) is equation
(3.1) together with condition (3.8). Therefore, (3.18) and (3.19) form the Lax pair for (3.1)
anda is the spectral parameter, even though inas-isospectral This result generalizes the
Lax pair of [15], in which the spectral parameter is absent.

4. Darboux transformations

We can now summarize the above results in the following form:

e Letu andw be solutions of (3.1) ang, a singular manifold for them (associated with a
spectral parametey). This singular manifold can be constructed from two eigenfunctions
Y andy, as

bre = Y1¥y bLy =V Vi, — ViV, (4.1)
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wherey; and vy, are eigenfunctions associated with an eigenvaluand therefore
satisfying the Lax pairs

0 == I/’]‘:xx - w]ty + Z(MX - )"1)‘()0;

+
y xy — Wy — 21y 4.2
I//l,ly _ Uyxy C()} Ly w{. +I,ty1//]-:x + 2)\,1‘¢f£y ( )

0=¢£t+

2 2
0=y, + ¥, + 2, — APy
Y1y ugto,—2h, ~ - (4.3)
O=1y, — 12’” - = y2 -2 Yy tuyyy, t2uyg
and the spectral parameter satisfies
A1+ Atdyy, =0. (4.4)
e According to (3.2), we can define new solutioriandw’:

u' =u+ $1x

gll | (4.5)
o =w+=2

o1

whose Lax pairs (associated with the spectral paramgjewill be
0= w;—xx - w;y + 2(”; - )‘2) 1///2-'—

, 1///+ ;o Uy, —w, — 2k L (4.6)
0=y, + Zéy} - = ; > Uy Ul Yy + 20y,
0=, + ¥y, + 20, —22)¥y

. Wé‘,. Wy tw, =22y . 4.7)
0=y, — 5" — =y +ul¥p + 2y,

and we can construct a singular manifgldfor the iterated fields’, ' throughy* and
V'~ as

Goe = Vs Vs By =Yy U — U g, (4.8)

4.1. Truncated expansion in the Lax pair

We can consider the Lax pair (4.6) or (4.7) as a system of coupled nonlinear PDEs [5, 9] in
w;, ¥, ,u andw’. Therefore, the SMM can be applied to the Lax pair itself and truncated

expansions foty," andl/f; should be added to the expansions (4.5). Such expansions can be

written as

Yo Vi
&1 1

The seminal solutions, », ¥; andy, must satisfy the same Lax pair with the spectral
parametei.,, which means that

0 = I//;’xx - Iﬂ;,y + Z(MX - )"2)‘(//;

vy =3 — Yy =y — (4.9)

'
Uy — @y — 20y 4.10
0=y, + wzz’” - SR g Dl o
0= wixx +W£y + 2(”)6 - Kz)‘ﬁ{
Yo Uty —2h, B - (4.11)
0=1v,, — ia—— .z tuy, 200, .

2 2
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Substituting the truncated expansions (4.5) and (4.9) in the Lax pairs (4.6), (4.7) and after
some calculation, (we used Maple V for it) we obtain

y;/@wm

(4.12)
@ = [ viv;
By substituting (4.1) and (4.12) in (4.5) and (4.9), we can conclude that the set
/ Yy
= + —-—
T v
, ViV — Y
w =wt f ¢+w7 e
1Y1 4.13
¢/+=1ﬂ+—w;fl/,;¢l_dx ( )
2 2 f‘,tﬁ/_-?_—wl_ dx
o Y [ vidx
KA R AR

constitutes a transformation of potentials and eigenfunctions that leaves the Lax pairs invariant.
Therefore, (4.13) should be considered as a Darboux transformation [10] for (3.1).

4.2. lteration of the singular manifold

New solutions can be built through the singular manifold and Darboux transformations as
follows.

Equation (4.8) can be considered as a nonlinear equatidng,iwé" and w; and it is
therefore pertinent to add the following truncated expansion to the set (4.13):

A
¢y =2+ — (4.14)
¢1

whereg, satisfies

Gox =Vo¥; G2y = Voo, — YV, (4.15)
Substituting (4.14) and (4.9) in (4.8), one has

A=-QQ . (4.16)

Since (4.14) defines a singular manifold fdrit can be used to build a new iterated solution:

W =+ ¢2,,x ) (417)
¢
Substitution of equation (4.5) far' in (4.17) gives
W=ut 2 (4.18)

T

where

T =¢op1 = 1o — Q. (4.19)
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5. Two singular manifolds for mKP-B
Let us return to equation (1.1), through the superposition (2.3).

Let¢ andg be singular manifolds far andii respectively. This means that the truncated
Painlee expansions fai andi are

u’ =u -+ ¢—A a)/ =w+ %
é b, (5.1)
=i+ o =b+ .
¢ ¢
Consequently, according to (2.3), the Paiglexpansion fo$ ando is
§ gt g b
k) ¢ (5.2)
g:u+A+¢—x+¢Tx: X+¢—X+¢—f
¢ ¢ ¢

Nevertheless, both singular manifolglgndg are not independent becausand;i are related
by the auto-Bcklund transformation (2.6)

Uy + iy + u— )% — 3 uy — i) = 0. (5.3)
The same happens fof andi’ which are related as
Wy + i+ ' — @) = 97w, — i) = 0. (5.4)

Substitution of (5.1) in (5.4) provides

%ﬁzﬁ(u_ﬁ+¢”—¢y>+¢—f —u+ﬁ+¢’f‘+¢f (5.5)
¢ ¢ 20c 20.) ¢ 29 29,

or
o AUAS e SR e e ) (56)
b ¢ @ 20 29, o 2¢ 20,

We can conclude that an equation such as mKP-B with two P&fienches admits a
two singular manifold expansion (5.2) in which both manifolds are related by (5.6).

The Lax pair for mKP—B can be obtained trivially by substituting the Miura transformation
in the Lax pair for KP-B.

6. Solutions

In this section, we obtain solutions to KP—B and mKP-B in a systematic way using the previous
results. The steps followed in this iterative procedure can be summarized as follows:

(1) We start from seminal solutions of (1.3) and write the Lax pair for them. The solitonic
behaviour of the iterated solutions will depend on our choice of the seminal ones.

(2) Solving the Lax pairs, we obtaif, ¥, , ¥, andy, .

(3) We use the results of 2 in (4.1), (4.9), and (4.12) to ohfqimp,, Q" andQ~.

(4) We use (4.13) and (4.18) to obtain the first and second iteraticarsdu”, respectively.

(5) By combining two solutions for (1.3) we can construct a solution for (1.1) by means of
(5.2). The singular manifolds should be related by (5.6).
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6.1. Caset =w =0
Let us apply the above procedure to the case in which the seminal solutions of (1.3) are
u=w=0.

If we restrict ourselves to the case in whichand, are constant, non-trivial solutions of the
Lax pairs (4.2), (4.3) and (4.10), (4.11) are

Ty,
v, = exp[aIx +((a))? = 2n)y — <M> t:|

2
- 4 a2 A
Yy =exp|a;x — ((a;)” — 2h)y + <L24)\1> t (6.1)
) 4 _ 4)\2 )
Y, = exp|:a$x + ((a;)2 — 2)2)y — (Lﬁ) t:| (6.2)
- V4 2\
vy =explayx = ((@;)" = 2h)y + (LZZ> ' (6.3)
whereqa;, a;” are arbitrary constants. Integration of (4.1) and (4.15) yields
1 .
h1= (YY)
_111( ) (6.4)
¢ = v a2 Y, ¥,
whereq; are arbitrary constants. Using (4.12) one has
+ 1 + + -
Q= ——B" +Y¢¥7)
ap *ay (6.5)
@ = i)

B*andg are arbitrary constants.
The first iteration provides the solution

u' = 3[In ¢1] o' = 0y[In ¢1] (6.6)

and the second one,

u = 0 [In 7] " =9,[In 7] (6.7)
1 + - - b= —
T = @ ra @ ta) (1o + a1, Yy ooy Yy + Ay Yy Yoy )
1 + o - =+
+(a; + aI)(aI + a2—) (ﬁ IB + /3 Wz ‘(//1 + 13 w]_ ‘(//2) (68)

(a3 —aj)(a; —ay)
= . 6.9
12 (a3 +ay)(ay +ai) (6:9)

This solution includes the two soliton solutions of [15] whgh= g~ = 0.
A particularly interesting case occurs wheh= aj ora, = a;. The interaction term
A1, therefore vanishes. This case is termedsonant state
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6.2. Cases =0 =0

In this case the Miura transformation (2.4) gives & = @ = ® = 0, which means that we
can use the solutions of the previous section and construct iterated soliitiendy using
(5.2).

According to (6.1)—(6.4), the solution fgrwill be

1 .
¢ = (@+yy)

at+a~-

4 4)\'2
vt = exp[a+x +((@)? =20y — (%) t} (6.10)

A _ 32
v= exp[a‘x @)=y + (%) z}

and foré:
¢ = e +&,(5l +yY)
7+ At A+ 2 (&+)4 — 45\2
Ut =exp|ax+ (@) -20y — — ! (6.11)
ANA_ p52
Vo= eXP[&X —(@)?-2y+ (%) t:| '

As mentioned befores andg should be related by (5.6). By substituting (6.10) and (6.11)
in (5.6), we have

T =gty
and
0— a~a aa*
at+a- a*+a

At + A— — 2 — A At
a =a a =a A=A a o =—ada .

We have for the first iteration

8 =1In <£>

¢ (6.12)
o' =In(¢¢)

with

1 .
b= —@+yy)
A 1 at . (6.13)
¢ =— <——“+1// 1#)

a®+a a

and for the second iteration,

87 =In (%) (6.14)

o”" =In(t?)
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% 1;///////”////?/ (K X XK
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22114

Figure 1. Two-soliton solutiors?,. Figure 2. Two-soliton solutiors;: resonant case.

Figure 3. Two-soliton solution fow,’. Figure 4. Two-soliton solution fow’, .

with
1
T

T (] *ap)(a; *ay)

(cn0p + a1y Wy + oWy + AWy Yo vry)

(B*B™+B Yy i + B Y1 ¥3)

+
(az +ay)(aj +ay)

= 1 ("‘ P R W S R zwww*w)
(af +ap)a; +ay) " aga,  lag 2TE T ey T T TR
(B* B~ + B Yy i + B v v3) (6.15)

+
(az +ap)(a; +ay)
(az —a7)la; —ay)
(a3 +ap)(a; +a7)
Figure 1 shows the behaviour 8f. Figure 2 is the resonant case. Figures 3 and 4 are
respectively ando?..

A =

7. Conclusions

e An equation in (2 + 1) dimensions (KP-B) and its modified version (mKP-B) are studied
from the point of view of Painle¥ analysis.

e Starting with the modified version, we have seen that the equation has two Rainlev
branches. The leading term analysis is a very useful indicator of how to construct a Miura
transformation between KP—B and mKP-B. It also determines a linear superposition of
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the solutions of mKP-B in terms of two solutions of KP-B related by an adgickBind
transformation that is explicitly constructed.

e The Lax pair for KP-B was obtained by performing Pai@enalysis on the singular
manifold equations. This allowed us to define the eigenfunctions of the Lax pair.

e In section 4 we considered the Lax pair as a system of coupled PDEs in the fields and
eigenfunctions and we obtained the Darboux transformations between two solutions of
KP-B. This permitted us to determine an iterative procedure for obtaining solutions from
already known ones.

e The linear superposition of the solutions of mMKP—B in terms of two solutions of KP—
B can be reinterpreted as a Pairélezxpansion of the solutions of mKP-B in terms of
two singular manifolds. These singular manifolds are not independent. The coupling
condition between them can be derived from the audckBind transformation for KP-B.

o Finally, we have applied the above results to obtain explicit solutions of both KP-B and
mKP-B.
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Appendix A

Substitution of the truncated expansion (3.2) in (3.1) provides a third degree polynor%\ial in
Setting each coefficient of each polynomial at zero, we obtain the following equations:

(a) Coefficient in#
Quy, + 8p,u, + 4 + 2v, + p(0° + 2v, +v?) = 0. (A.1)
(b) Coefficient in;

—8uyy — Apcuc12vuy + u (—24vp, — 16p,,) — 4vyy — 6VV, — 81 — 120r
+px(_3pxy — Uxx — 7va - 3U3 - SUP)%) + pxx(_4vx - 2U2 - 31%2) =0.

(A.2)
From (A.1), we can obtain, as
uy = — 8pyuy +4r + 2v, -;px (of +2v, +1?) (A3)
whose substitution in (A.2) gives us
Bty — 2pxy + 20, + 200, + 2pxpxx =0 (A4)

which can be integrated as
8u, —2p, +2v, + V2 + pf —8\(y,1) =0. (A.5)
From (A.3) and (A.5), we obtain, andu, as

2py — 2v, —v? — p?

L= +A A.6
u - (a.6)
Uy =Wy = —7 — 2Apx — O évxp) (A.7)

wherei = A(y, t).
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The compatibility condition,, = u,, between (A.6) and (A.7) is precisely the singular
manifold equation (3.7):

2

2
Px Dy Py Py | Ux v
0= +—+2)x +| =+ -—=+ = - — =0. A.8
[r 2 p]x [4 8 4 81 (A-8)

w,, can be obtained by taking the derivative of (A.7) with respect &md then performing an
integration inx. The result is

2 2.2 2
pry — Pxxy — UPxy — UDx Pxx _ Py TuopL t Py

2
wy =rpy + 20py — py — 2hpy + 5 7

(A.9)

(c) Coefficient int.
This coefficient is identically zero when (A.6) and (A.7) are substituted.

(d) Coefficient ing°®
This coefficient is obviously equation (3.1). By substituting (A.6), (A.7) and (A.9) in
(3.1), we obtain the condition of non-isospectrality:

A+ 200, =0, (A.10)
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